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Abstract

In this thesis, a new method of studying problems in network information flow is introduced.

This is established by developing on the relatively new concept of guessing numbers, which

is related to network coding, and combining it with another technique known as fractional

routing. The resultant guessing game, called a fractional guessing game, is a modification

of the existing guessing game that incorporates the notion of fractional routing for multiple-

unicast networks. It is essentially an intersection of two major areas of mathematics which

allows further study into network flow problems, and the relationship between guessing

numbers and the solvability of network flow problems.

To illustrate this relationship, we construct a graph (the pentagon or 5-cycle) that has a non-

integer guessing number, by using a guessing strategy which ensures a guessing number in

the half-open interval (2, 2.5]. This is an application of the link between guessing numbers

on graphs and the solvability of their related networks. It is shown that the fractional

guessing number of an example graph is higher than the guessing number computed using

the existing linear approach. This guessing number is also dependent on the size of the

alphabet from which the messages are constructed, answering an open question from the

literature relating to the possibility of such a dependency. Finally, the extension of the

method to include techniques of both routing capacity and network coding is discussed.
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Chapter 1

Introduction

This chapter provides an overall description of the field of work covered herein, as well as

some outline for the remainder of the thesis.

The objective of this thesis is to introduce a new method — or at least improve on existing

methods — for studying problems in network information flow. Linear coding methods

have shown to be insufficient for certain solvable networks [12], and many open questions

still remain regarding linear coding as an approach [24, 9]. Open questions are indeed a

feature of a number of recent publications in this relatively new field; however, each paper

does go some way to reducing the overall number of these questions. This thesis aims to

do the same.

The approach for this thesis will be to study the theories and technologies currently in

use, and to investigate where and why they prove to be inadequate. By highlighting these

points of failure it should be possible to work toward an optimal solution to overcome these

problems. Before investigating the modern technologies in use, however, it is necessary to

provide some introduction of the history of networking.
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1.1 Graph Theory

Graph theory is an area of mathematics, often regarded as being popularised when Leon-

hard Euler solved the problem of the Seven Bridges of Königsberg [5]. Euler’s work, later

generalised by other mathematicians, is said to be at the heart of topology, a branch of

mathematics not introduced until over a century later. Graph theory contains a number of

accessible problems, one of the most famous being the four colour theorem. This theorem

is particularly famous due to the use of a computer to assist in the proof; the computer was

used to show that only four colours were required for each of about 2000 maps, to one of

which any map could be reduced [2]. In fact, the four colour theorem (or its earlier forms

and attempts to solve it) has been suggested as the origin of the entire field of graph theory

[34].

The use of a computer in proving mathematical theorems is a controversial issue, not least

because of the lack of elegance in the proof. As with the four colour theorem, a computer

is usually used to exhaustively prove a great number of cases that could not feasibly be

produced by hand without years of computation. The objection to using computers in this

manner is also that the proofs may not be logically verifiable, simply because of the number

of steps. The algorithm and programs used must be fully trusted to accept the proof.

In addition to a number of colouring problems, there are various routing problems, some

of which can be expressed as problems in computational complexity theory. Computa-

tional complexity theory is concerned with finding the most efficient algorithm to solve a

given problem. An example is the travelling salesman problem, which seeks to find the

Hamiltonian cycle with the least weight for a given complete weighted graph. In terms

of computational complexity, finding such a cycle is NP-hard. A brute-force method for

solving such a problem quickly becomes impractical, as the time required to find the short-

est cycle grows with n!, where n is the number of nodes in the graph. It is critical, then,

to develop algorithms to solve these problems more efficiently. Investigations have demon-

strated that both algorithms and network flow problems are closely related to the colouring

problems mentioned above [34].
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1.2 Information Theory

Applied mathematics has long been used to solve problems in information theory. The

discipline of information theory was formalised in 1948 by Claude Shannon [31], though ex-

isting communication methods had used the ideas for some years previously. Information

theory is based on probability theory and encompasses a number of scientific and engi-

neering disciplines, and as such is a fundamental part of many modern developments and

inventions, from mobile phones and compact discs to the study of black holes [4]. Network

information theory is concerned with the study of networks — or acyclic, directed graphs

— and the transmission of information in these networks.

At the heart of Shannon’s work is coding theory, dealing with the transmission of infor-

mation across a noisy channel. The codes are separated into two types; source coding and

channel coding. Source coding seeks to compress the data so that fewer bits are required

to transmit it. The fewest number of bits required to transmit a piece of information is

given by its entropy (see Section 2.5). On the other hand, channel coding adds redundant

data to minimise the effect of the noise. The redundant data are used as error correcting

codes. The paper also states that reliable communication is possible (i.e., errors may be

made arbitrarily small) over a noisy channel if the rate of communication is less than the

capacity of the channel. This paper is concerned with both types of coding.

1.3 Network Coding

Recently a new field of information theory, known as network coding, has emerged. The

concept was introduced by Ahlswede et al., and they give examples as to the benefits

of using network coding to increase network throughput. The findings have significantly

affected the discipline of information theory by showing that traditional routing methods do

not suffice when attempting to achieve the optimal flow of a network [1]. Work on this new

area has advanced significantly over the past few years (see, for example, [1, 16, 17, 24, 12]).

3



Network coding has emerged as a result of the theories above — initially developed for

satellite communications [35], the tools introduced were new to multi-user information

theory. Network theory uses graphs to represent relationships between discrete objects, and

hence coincides with graph theory. Network coding builds on network routing, a problem

in network theory, and shows that network routing is not sufficient (see Section 2.2).

1.4 Origins of Work

Figure 1.1:
Each topic builds upon another previous area of work. This diagram
shows the association between topics covered, and how they lead to the
work in this thesis.

Figure 1.1 shows how the topics introduced above are relevant to the work in this thesis.

Network coding builds on ideas from traditional network routing (Section 2.1) and combines

it with information theory. This thesis combines the new concept of guessing numbers

[25, 26] (Section 2.3) and an existing subfield of network routing known as routing capac-

ity (Section 2.4). Each step can be seen as using the tools from one discipline to improve

the techniques used in the other. For example, this thesis aims to use the tools used in

routing capacity to improve on the concept of guessing numbers.
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1.5 Criteria for Success

As mentioned at the beginning of this chapter, this thesis is concerned with producing

a new or improved technique for dealing with information flow problems. Ideally, this

technique should help to answer some of the open questions in the field of network coding.

The criteria for success are outlined below and are evaluated in Chapter 5.

� Study and description of existing methods within network coding and network routing

capacity;

� development of a new method for studying network flow problems based on existing

techniques;

� abstraction and formalisation of a modified guessing game based on the new method;

� study and evaluation of cases in which the new game is more successful than the

existing game.

1.6 Thesis Outline

Chapter 2 contains the literature review, defining some of the key concepts and discussing

work in the fields of information theory and network coding. It describes how the short-

comings of traditional routing used in existing network technologies have brought about

these new fields. In addition, it gives more detailed information on some of the open and

solved problems. Specific attention is paid to three papers by Riis et al. [25, 26, 8], the

only previously submitted papers detailing the concept on which this thesis expands. The

background study required to understand the methods used in later chapters is reviewed

here.

Chapter 3 expands on some of the open problems mentioned in Chapter 2, together with

other problems that were approached. As well as expanding and improving on existing
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work, it covers definitions of new concepts in the field. New definitions and propositions

are provided here. In particular, the new concept of a “routing guessing game” allows

certain problems in network information flow to be viewed with a new approach.

Chapter 4 provides examples and applications of these new ideas. In addition, the main

theorems required to validate this new concept are proved here. Specifically, the existence of

a non-integer guessing number is proved using a specific guessing strategy on the pentagon.

Chapter 5 provides a critical evaluation of the issues tackled and overcome throughout the

writing of the thesis. It discusses whether the problems raised at the beginning of the

thesis have been sufficiently addressed. The criteria for success are each evaluated in turn

to provide a complete review of the work undertaken. The achievements of the thesis as

well as its impact on the field of information theory are discussed in this chapter, as well

as some possibilities for further work.

Chapter 6 provides conclusions from the ideas discussed in the thesis by giving a general

review of the work undertaken. Open questions that have either arisen from the work

contained herein or from previous work are listed in this final chapter.
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Chapter 2

Literature Review

The aim of the literature review is to introduce the problem domain. This chapter gives

background information on the existing work in the field, noting the research most im-

portant and relevant to this project. It outlines the study into the connections between

network flow problems and their related problems in graph theory, and suggests areas for

expansion on the surveyed literature.

2.1 Traditional Routing

Traditional routing involves choosing paths in a network for data transmission. It treats

messages sent along the network as packets, which cannot be divided into smaller units,

or otherwise altered. This method is used in a large variety of real-world networking

applications, such as traffic management, telephone networks and computer networks.

Routing may be controlled manually by configuring specific routing tables to direct packets

along the most direct route, or in a more autonomous manner by assigning certain routing

protocols allowing the packets more freedom in the route taken. These different methods

of forwarding information are known as schemes (Figure 2.1), and vary in techniques —

7



from delivering the information to one specific node, to delivering the information to all

adjacent nodes regardless of whether they requested it.

Unicast (Figure 2.1(a)) is the most common routing scheme used in current telecommunica-

tions networks. It involves the sending of the packets to exactly one destination. Broadcast-

ing (Figure 2.1(b)) is the opposite of unicasting; the packets are forwarded to every node

in the network. Multicasting (Figure 2.1(c)) is a more sophisticated approach, similar to

broadcasting. In multicasting, packets are sent to a number of adjacent nodes determined

by some calculation of a minimum spanning tree. Anycasting (Figure 2.1(d)) is slightly

different in that it has a number of possible nodes to which it may forward the packet, but

only one node is ultimately chosen to receive it.

(a) (b)

(c) (d)

Figure 2.1:
Examples of the different schemes used in packet forwarding: (a) uni-
cast, (b) broadcast, (c) multicast and (d) anycast. Packets are for-
warded from the black node along the bold edges.

Network routing is an enourmously successful data transmission method, seen by its use in

so many existing technologies. However, its methods may limit the transfer rate in certain

8



cases — for instance, bottlenecks may appear in certain network topologies. These may be

due to the fact that information is viewed as a discrete unit, something which may not be

broken down into smaller components. This is akin to viewing the atom as the building-

block of the universe; whilst it was once viewed as the most advanced model, technology

showed that it was possible to break it down into yet smaller components, and that different

combinations of these components yielded different atoms. To eliminate these bottlenecks,

a similar paradigm shift was required.

2.2 Network Coding

As mentioned above, traditional routing is used in a number of information networks, from

communication in a processor to communication across the Internet. However, there are

disadvantages to using these techniques; a simple network can be constructed where no

routing method can achieve optimal flow.

Figure 2.2:
The butterfly network, first introduced by Ahlswede et al. [1]. Because
of the central bottleneck, routing is insufficient: the left sink node fails
to resolve both A and B.

In the so-called “butterfly” network in Figure 2.2, first introduced in [1], the two sink nodes

at the bottom each need to receive both messages A and B from the two source nodes at

the top. The edges between each vertex denote paths or channels along which data may

flow, and the arrows signify the direction in which it may travel. Assume that each channel
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can transmit only one message per unit time. If traditional routing is used, then only trivial

functions may be used. This means that the middle channel cannot transmit both A and

B at the same time, resulting in a bottleneck. If the central channel transmits only A,

then the left sink node does not resolve both messages. If this particular network set-up

appeared in a real-world situation, for instance client computers requesting information

from two separate servers, then one client would be forced to wait until all the information

had been transmitted to the other client before completing its own requests.

Network coding is an emerging field of information theory in which messages are viewed

as information. This means that any node in the network may replicate or alter the

messages. In other words, the outgoing edges from a given node will transmit some function

of the data received on the incoming edges. For instance, if on the network in Figure 2.2

the exclusive disjunction A⊕B is sent along the middle channel, the sink nodes can resolve

both messages (Figure 2.3). To see this, node that the left sink node receives A from the

left source node, and A⊕B from the central channel. Since A⊕B ⊕A = B, it is possible

to compute both original messages A and B, as desired. The process is similar for the right

sink node.

Figure 2.3:
Using network coding allows both sources to successfully resolve both
messages.

In this manner, the entire method of traditional routing can be viewed as the trivial case

of network coding when only the trivial functions are used; in other words, the output of

each function is equal to one of its inputs.

10



In general, if the message mx,y = f(x, y) ∈ A (for some finite alphabet A) is sent along the

middle channel, then the problem can be solved if and only if f(x, y) is a Latin function

[28].* The main aim of using network coding is to find a set F of such functions, called a

solution, to allow all of the sink nodes to be satisfied. The network is said to be solvable if

F exists.

If a solution uses only trivial functions it is known as a routing solution, and if (as in the

butterfly network) the output of each function is a linear combination of its inputs, it is

known as a linear solution [9]. To refine these definitions even further, if the messages passed

along the nodes are scalar quantities, then a solution is known as a scalar linear solution.

Often, however, it is useful to consider message vectors, or blocks of scalar messages; in

this case, a solution is called a vector linear solution.

The problem of the butterfly network above can be converted into a problem in graph theory

by representing the network as a circuit, and identifying nodes. Such a representation is

called circuit representation. Converting the networks in this manner allows all of the

tools at the disposal of the graph theorist to be used on problems in network coding. In

this representation, all of the computations in the network are carried out in the nodes.

Circuit representation is a slightly different (but mathematically equivalent) representation

of a network coding problem which serves to be a slightly more useful (if less accurate)

method of depicting the network coding problem [25]. A source node s is identified with the

output node(s) (or sink nodes with respect to s) attempting to compute the information

transmitted from s. This particular problem results in K3, or the complete graph on 3

nodes [25]. The proof of this conversion is illustrated in Figure 2.4. The motivation behind

this conversion is to have an equivalent problem that can be expressed in graph theoretic

terms [25, 26].

Network coding has shown its usefulness in a number of areas for concern; one important

example is its improvements to wireless networking. Increases in throughput and energy

*The function f(x, y) is Latin if for each (x, y) ∈ A2, the functions my : A → A : x 7→ my(x) = f(x, y)

and nx : A → A : y 7→ nx(y) = f(x, y) are bijective maps.
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Figure 2.4:
Start with Figure 2.2. First, the network is represented as a circuit
information flow problem, with computation at the nodes. Then the
sink nodes are identified with the source nodes, resulting in K3.

efficiency are evident in wireless network topologies as well as other networks [29]. With

wireless access points becoming so popular, and with their limited range requiring inter-

mediate access points or mesh networks, there is growing concern for the security of data

broadcast via radio waves. Network coding has been shown to be a useful approach to

prevent eavesdropping on secure communications [7]. As mentioned above, information

theory is primarily concerned with transmission of data over noisy channels, and network

coding has been shown to be a successful alternative to other error-correction methods [18].

Network coding has also been considered for peer-to-peer (P2P) content distribution, and

is even believed by some that it may improve performance over P2P networks, but Chiu

et al. conclude that there is little or no coding advantage, due in part to the time and

resources required to decode the delivered information [10].

2.2.1 Linear versus Non-Linear Coding

Previously, it has been conjectured by a number of authors (for example, [22, 3]) that linear

network coding is optimal for an arbitrary network topology. Indeed it is known that every

solvable multicast network does have a scalar linear solution provided the alphabet is a

sufficiently large finite field [20]. Moreover, any solvable multicast network has a linear
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solution in some vector dimension [24]. However, it is also known that this result does

not extend to arbitrary networks (see, for instance, [19]). Dougherty et al. [12] provide a

solvable network that does not have a linear solution over any finite field, or indeed over

any module.� Riis and Ahlswede introduce other counter-examples, but suggest that these

are so far only “rare isolated incidences” [28].

2.3 Guessing Numbers

The concept of a guessing number was developed by Søren Riis [25, 26] to investigate the

solutions of particular network flow problems. The concept was notably used to provide

a counter-example [26] to the conjectures made by Leslie Valiant [32]. To understand the

meaning of the guessing number of a graph, consider the following problem:

Imagine a game consisting of n players, each of whom has an s-sided die (for s ∈ N, s > 1),

where each side is labelled in the usual manner from 1 through to s.� The dice are rolled

simultaneously in such a way that no player knows the value of their own die. The task for

the players is to guess the value of their own die.

1. What is the probability that all n players can correctly guess their die value?

2. Now assume that each player knows the value of every die except their own. What

is the probability that they all guess correctly now?

In the first question, each player acts independently and, since the probability that each

player is right is 1/s, all n players guess correctly with probability s−n.

�A module is a concept in abstract algebra that generalises the idea of a vector space. The notion of a

vector space being expressed over a field is also generalised; a module is expressed over a ring.
�In accordance with most papers in computer science, the set N of natural numbers is defined as the

non-negative integers, that is N = {n ∈ Z : n ≥ 0}.
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At first glance, it may seem that allowing the players to see the other players’ dice cannot

improve their odds, since the information held on other dice in no way alters the value

of one’s own die. However, the players may adopt a “strategy” that uses the information

provided to them from the others. There are many strategies that the players may adopt

to utilise this information, but the best (or optimal) strategy is for the players to assume

beforehand that the sum of all the dice is congruent to a modulo s. The player then

calculates the sum total of the other dice, T , and “guesses” their value to be a−T modulo

s. Clearly if the result is 0, then the player must guess s, since no side is labelled 0. This

strategy ensures that all players “guess” the value of their own die with probability 1/s if

(and only if) one player guesses correctly. Note that since any one player can only guess

correctly with probability 1/s, this gives an upper bound on the guessing number, and

hence this is an optimal strategy.

The game (or class of games) mentioned above is a subclass of a larger class of co-operative

games, known as guessing games. A guessing game is a method of representing a problem

from Cmu, the class of multiple-unicast information flow problems [25]. A multiple-unicast

problem is a network with n source nodes {ir} and n sink nodes {or}, where each output

node or must resolve the message mr from the corresponding input node ir. The game is

played on a directed graph G = (V,E) where V is the set of vertices, and E ⊆ V 2 the

set of edges between those vertices. In the case of a directed graph, there is an edge from

v ∈ V to w ∈ V if and only if (v, w) ∈ E — in other words, E is a collection of ordered

pairs.§ Each vertex represents a player in the game, and edges represent communication

paths between the players. If the graph is directed, then the communication may only

travel along the edge in one direction, for instance from the head to the tail. Note that all

graphs in this class are simple, in that they do not contain any self-loops. In the game,

a self-loop would correspond to a player immediately and explicitly knowing the value of

their die once thrown.

§In the undirected case, E is a collection of unordered pairs, or sets of cardinality 2; an undirected edge

between v and w is denoted {v, w}.
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Definition 2.1 (Riis [25]): A guessing game, denoted GuessingGame(G, s), is played as

follows: each player v ∈ V is randomly assigned a value mv ∈ A, where A = {1, 2, . . . , s}.

The players then communicate their values to adjacent players, i.e. to all players w with

(v, w) ∈ E. Node w receives a set of values Mw = {mv ∈ A : (v, w) ∈ E}. From the

information received, each player must resolve their own value. Assuming that the players

have agreed on a strategy, the probability that all players guess correctly can be calculated.

Explicitly, a strategy or protocol is a set of functions fw : A|Mw| → A for each w ∈ V . A

function fw denotes player w’s guess.

There are very many co-operative strategies for the players to adopt: in general, there

are s
∑

v∈V s|Mv |
strategies. Each strategy has associated with it a probability determining

the likelihood of success of that strategy. Clearly the strategy that yields the maximum

probability is optimal.

The alphabet A from which the values are assigned need not be as simple a structure as

described above; it could, for instance, be a field, a ring, or (as was used in one proof in [25])

a commutative group; suitable algebraic structures must include some notion of linearity.

However, for most cases the description provided above is adequate.

Just like the butterfly network considered previously, the example guessing game corre-

sponds to a complete graph; every player is connected by an edge to every other player.

Therefore, the total number of guessing strategies available to the players of this game is

sns
n−1

. As shown above, the optimal strategy for players in this situation gives a probability

of success of 1/s, a factor sn−1 better than uncoordinated, random guessing. This gives us

a guessing number of n− 1, the exponent of the quotient of the probabilities.

The formal definition of the guessing number of a graph is as follows:

Definition 2.2 (Riis [25]): LetG = (V,E) be a graph where each vertex v ∈ V corresponds

to a player of the guessing game. G has guessing number k = k(G, s) if there is a strategy

that ensures their success with probability sk−|V |. In other words, the strategy succeeds

with probability sk times higher than independent, random guessing.
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The guessing number is often independent of s. Also, rather surprisingly, for many graphs

the guessing number is also an integer. Though it is noted in [25] that there exists a directed

graph where the guessing number depends on s, it is left as an open question as to whether

the guessing number of an undirected graph is always an integer. Later, in Chapter 4, it is

shown that there exists an undirected graph where the guessing number depends on s and

is never an integer.

The guessing game GN can be said to be a graph representation of a specific information

network (or subclass of networks) N ∈ Cmu. The mathematically correct representation of

the network is called “standard representation”. In this representation (and throughout

this thesis) a network N is a directed acyclic multi-graph, where source nodes have in-

degree 0, and sink nodes have out-degree 0. Each source node ir is associated with exactly

one message mr ∈ Γvar (this notation is used for consistency with [25]). Each outgoing

edge from a given node v transmits the same function fv : A
d → A, where d is the in-degree

of v. Each sink node needs to resolve some subset of the variables in Γvar.

The standard representation of the circuit information flow problem N is converted to the

directed graph GN by introducing a vertex for each variable or function assigned to an edge

or node in N , and identifying each input node ir with its corresponding output node or for

each r ∈ {1, 2, . . . , n}.

If the guessing game has some meaning in information flow problems, then it is reasonable

to assume that the guessing number has a similar generalisation. Before this generalisation

is explained, some definitions are required.

Definition 2.3 (Riis [25]): The global success rate of N with respect to a set of coding

functions F is the probability that all outputs correctly determine their messages, given that

the inputs are selected randomly from a finite alphabet A and with independent probability

distribution. It is denoted p(N, s, F ) where s = |A|.
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The maximum global success rate p(N, s) is the supremum of all global success rates

p(N, s, F ) for any choice of coding functions F . Since the set of functions F is finite,

p(N, s) = p(N, s, F ) for some F .

Definition 2.4 (Riis [25]): The source transmission bandwidth of the information network

N over alphabet A is defined as k(N, s) = logs(p(N, s)) + n, where n is the number of

source nodes of N .

This definition generalises the concept of a guessing number [25]. The guessing strategies

used in the guessing game correspond exactly to the network coding functions in the network

flow problem.

As proved in [26], a network flow problem N with n input/output nodes has a solution over

alphabet A with |A| = s elements if and only if the corresponding graph GN has guessing

number k(GN , s) ≥ n.

In [25], it was shown that if a network N ′ appears from a network N by application of r

split moves and t inverse split moves, and N has global success rate p, then N ′ has global

success rate pst−r. A “split move” is a simple operation applied to an inner (not an input or

output) node w ∈ V in a network N = (V,E). The operation copies the node w, creating

two nodes winput and woutput. Explicitly, split : Cmu → Cmu : N 7→ N ′ where N ′ = (V ′, E ′),

V ′ = V ∪{winput, woutput} \ {w} and E ′ contains all the edges of E except those connecting

to w, plus (w, u) ∈ E ⇒ (winput, u) ∈ E ′ and (u,w) ∈ E ⇒ (u,woutput) ∈ E ′, each

counted with multiplicities. Since the split and inverse split moves are applied only to the

inner nodes of N , in other words those nodes in V \{i1, i2, . . . , in, o1, o2, . . . , on}, the source

transmission bandwidth remains unchanged under them, and hence k(N, s) = k(N ′, s).

It is worth noting that if N ′ can be realised from N by applying a certain number of split

and/or inverse split moves, then the graphs GN and GN ′ are identical. This is because

creating the graph GN is effectively the same as applying as many inverse split moves as

possible to N . In other words, GN is invariant under split moves on N .
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2.4 Routing Capacity

Although the messages transmitted in a network are scalar quantities, it can be useful to

consider blocks of these quantities as vectors. If the capacity of each edge in the network

is of the same dimension as these message vectors, then any vector solution corresponds

directly to a scalar solution where the alphabet consists of vectors. Fractional coding refers

to the case where edges vectors and message vectors differ in dimension.

Cannons et al. [9] look at fractional coding for networks in the case of routing, referred

to as fractional routing. The routing capacity ϵ of a network is “the supremum of all

possible fractional message throughputs achievable by routing” [9]. In other words, it is the

highest possible ratio of message dimension to edge capacity that can be obtained using a

fractional routing solution. A (k, n) fractional routing solution is a solution where message

vectors are of dimension k and edges have capacity n. Routing capacity is essentially a

method brought about by the failure of other methods to provide the best possible data

transmission for certain networks, and it is this advantage over linear network coding that

will be exploited in Chapter 4.

The routing capacity of every network was shown to be both achievable and rational [9].

Furthermore, it is shown that for each r ∈ Q, r > 0, there exists a network whose routing

capacity is equal to r, and that any r ∈ (0, 1] ∩ Q is the routing capacity of a solvable

network. The concept of routing capacity is generalised to coding capacity, with the inferred

definition. The coding capacity of a network is proven to be independent of the underlying

alphabet.

The butterfly network in Figure 2.3 was shown to have a linear coding solution, namely if

the central channel transmits the function A ⊕ B. In Figure 2.5, if both A and B are to

be transmitted along the central edge (3, 4), the edge capacity n must be at least twice the

vector dimension k, hence 2k ≤ n and ϵ = k/n ≤ 1/2. Now by transmitting A along edges

(1, 3), (1, 5) and (4, 6), B along edges (2, 3), (2, 6) and (4, 5), and transmitting (A,B) along

(3, 4), there is a fractional routing solution to the network, and ϵ ≥ 1/2. From above, the
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Figure 2.5:
The butterfly network, which has been shown to have a linear coding
solution, has routing capacity 1/2.

routing capacity of the butterfly network is ϵ = 1/2 [9].

A slightly more complicated example of routing capacity is the network N shown in Fig-

ure 2.6. In [12], it was shown that N has no linear solution for any vector dimension over

a finite field with odd cardinality (it was shown in the same paper, however, that it has a

scalar linear solution over any ring of cardinality 2). The three messages A, B and C are

transmitted by 1, 2 and 3 respectively, and are demanded by 14, 13 and 12 respectively.

The following proof is reproduced from [9], and shows that the N has a coding solution

with routing capacity 2/3.

The edges (1, 12), (3, 9) and (7, 14) can be immediately ignored, since none of the edges

can transmit any useful information to their sink nodes. For example, node 7 receives

information about the messages B and C, but node 14 is only concerned with message

A. Ignoring these edges implies that (4, 6) and (5, 7) carry all the information from the

sources to the sinks. Since there are 3 messages to be transmitted along 2 edges, this

quickly imposes an upper bound of ϵ = 2/3 as 3k ≤ 2n for any k, n. Now let (k, n) = (2, 3)

— so message have 2 components and edges have capacity 3 — and transmit the messages

as follows:
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(1, 4) = (11, 14) = (A1, A2)

(2, 4) = (11, 13) = (B1)

(2, 5) = (10, 13) = (B2)

(3, 5) = (10, 12) = (C1, C2)

(4, 6) = (6, 9) = (A1, A2, B1)

(5, 7) = (7, 8) = (B2, C1, C2)

Figure 2.6: The network N , reproduced from [9], has routing capacity 2/3.

This gives a fractional routing solution to N , meaning ϵ ≥ 2/3 and hence ϵ = 2/3. Note

that when omitting the ignored edges together with (6, 8) (which also remains unused),

we obtain a satisfyingly bisymmetric subgraph of N , which goes some way to explain the

symmetry of the routing solution.

As mentioned in Chapter 1, even though a number of questions are answered in [9], some

questions are left open; for instance, whether the coding capacity is achievable for every

network, and if algorithms exist for computing the coding capacity of a network. It has
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since been shown that the coding capacity of an arbitrary network is not always achievable

by the network, unlike the case of routing capacity [13].

2.5 Information Entropy

Shannon’s classical information inequalities [31] will be used to calculate the guessing num-

bers of cycles in Chapter 4. Shannon’s inequalities are a number of rules governing infor-

mation entropy H(X), the measure of uncertainty of a particular random variable.

H(X) = E(I(X))

=
n∑

i=1

p(xi) log2 (1/p(xi))

= −
n∑

i=1

p(xi) log2 (p(xi))

Here, I(X) is the self-information of X, or the information associated with the outcome of

X, and p(xi) = Pr(X=xi). In the same manner, entropy can be thought of as the amount

of self-information that is missing when the value of X is unknown.

A fundamental result in information entropy is Gibbs’ inequality; that is,

∑
pi log2 pi ≥

∑
pi log2 qi

for probability vectors P = (p1, . . . , pn), Q = (q1, . . . , qn).

A simple example would be a weighted die that can be altered to offer bias to different

outcomes (Figure 2.7). The more bias toward a certain outcome, the less uncertainty there

is in the result of the roll. If the die is weighted such that every roll produces a 6, say, then

the roll provides no information, and the entropy of the outcome is 0. If the dice has no

bias, then the uncertainty is maximised, and the entropy is log2 6 ≈ 2.58. When logs are

taken to base 2, entropy is measured in bits. In the case of statistical information, a “bit”

21



Figure 2.7:
The graph of entropy shows that less information is provided when
the probability of rolling a 6 approaches 1. The entropy function is
maximised when the probability of throwing a 6 is 1/6, where the die
is fairest.

is slightly different from the storage unit used in digital computers. In digital storage, a bit

is a discrete quantity taking only one of the values in {0, 1}. In terms of entropy, a variable

with n bits of information can theoretically, and on average, be stored on a computer using

n bits, though this value is a minimum. The value indicates the number of bits of actual

information contained in the result, and as such provides a lower bound on any lossless

compression of the data.

This can be explained by the notion of “redundancy”. Ordinary text in the English language

has a great redundancy — certain phonemes or letters that are not strictly required to

convey the original message. Take, for example, an advertisement for training in shorthand

notation: “f u cn rd ths msg u cn hv a hi pyng jb” [15]. Compare also with telex speak

and SMS language, where similar shorthand is used to convey the message in the limited

number of characters available. If, as with ASCII encoding, each letter has an entropy of

exactly 7 bits when chosen at random, English text has an entropy of between 1 and 1.5

bits per letter; it is quite easy to determine the next letter in the sequence [30]. This exact

principle can be used in cryptography to break simple substitution ciphers, by working out

the frequency of appearance of each letter.
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2.6 Bipartite Graphs

It is possible to rearrange problems in network flow to a bipartite flow problem. In this

arrangement, there are two copies of each node, one copy having the same in-degree as the

original node, and the other having the same out-degree as the original node. This is the

result of applying the split move mentioned in Section 2.3 to all inner nodes in a graph N to

get the bipartite graph BN with no inner nodes [25]. The result is shown in Figure 2.8(b),

where the the edges are implicitly directed from top to bottom. As mentioned above, the

two are different representations of mathematically equivalent problems.

(a) Network flow problem (b) Equivalent bipartite flow problem

Figure 2.8:
The graph in (a) is converted to the bipartite problem in (b) by making
two copies of each node.

Bipartite graphs are the heart of a different game introduced in the same paper as the

guessing game, known as PublicChannelGame(G,P ). In this game, each node has access

to a number of public messages p ∈ P , p : An → A as well as all the messages received

from its own incoming vertices. In the case of a guessing game, it is always possible to

substitute a suitable public channel for the guessing part of the game if and only if the

solution is linear [25].
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2.7 Matchings and Fractional Matchings

A matching M of an undirected graph G is a subset of the edges E of G such that no two

edges in M share a common vertex (Figure 2.9(a)). A perfect matching is a matching that

covers every node in the graph (Figure 2.9(b)).

(a) (b)

Figure 2.9:
A matching (marked by bold lines) (a) is a set of pairwise non-adjacent
edges, and a perfect matching (b) is a matching that covers all the
vertices.

A fractional matching of a graph G is a function f : E → [0, 1] such that for any u ∈ V ,∑
v : {u,v}∈E f({u, v}) ≤ 1 [21]. The fractional matching number of a graph is the supremum

of all fractional matchings, sup
∑

{u,v}∈E f({u, v}).

A perfect fractional matching is observed when each of the sums is exactly equal to 1. As

with matchings, fractional matchings only apply to undirected graphs. Here, the weightings

refer to the capacities of the vertices.
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2.8 The Fractional Matching Problem

The Fractional Matching Problem is a well-known problem in graph theory:

Maximise
∑
e∈E

xe

such that ∀v ∈ V
∑
e∋v

xe ≤ 1

xe ≥ 0.

The above problem has been stated in many forms. It was shown by Bourjolly and Pul-

leyblank (see, e.g., [6]) that there exists a maximum solution to the fractional matching

problem that is half-integral, with each edge having a capacity in {0, 1
2
, 1}. The theorem

is stated below. The proof is outlined in two stages and follows from Theorem 2.7.

Theorem 2.5: For every graph, there exists a fractional matching that is half-integral,

where each edge in the matching has its weighting in {0, 1
2
, 1}.

Let G(V,E) be a graph, and denote by ce ∈ R the weighting assigned to the edge e ∈ E.

Denote by c = (ce : e ∈ E) the vector of these edge weights.

For each edge e, define a variable xe ∈ {0, 1}. Now denote by xJ the incidence vector

representing J ∈ E, where

xJ
e =

 0 if e /∈ J ,

1 if e ∈ J .

Let RE be the set of all real-valued vectors indexed by E. Let x(J) =
∑

(xj : j ∈ J) for

any J ⊆ E, x ∈ RE. Let M = {xM ∈ RE}, where M is a perfect matching in G. M is

a (finite) set of (0, 1)-valued vectors, the convex hull of which is a polytope¶ in RE. It is

called the perfect matching polytope, and is denoted PM(G).

¶A polytope is the generalisation of a polygon in two dimensions, a polyhedron in three dimensions,

and so on. A convex hull for a set X is the minimal convex set containing X.
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Since every polytope is the solution set of a finite system of linear equalities [33], we attempt

to find such a system for PM(G).

Theorem 2.6 (Edmonds [14]): For any bipartite graph G(V,E), PM(G) is the set of all

x ∈ RE satisfying

x ≥ 0, (2.1)

x(δ(v)) = 1 ∀ v ∈ V. (2.2)

Proof: Denote by P the set of solutions for (2.1) and (2.2). Because the incidence vector

xM ∈ P for any perfect matching M , M ∈ P and therefore PM(G) ∈ P .

Now suppose ∃x̃ ∈ P which cannot be expressed by convex combinations of members of

M. Choose x̃ such that F = {e ∈ E : 0 < x̃e < 1} is minimal. F ̸= ∅. Since x̃ satisfies

(2.2), no node can be incident with just one member of F , so F contains the edges of some

cycle C in G. C has an even number of edges, since G is bipartite.

Now let d ∈ RE be a vector which is 0 for all edges j /∈ C, and alternately 1 and −1 for

those edges in C. For any ∆ ∈ R, x̃ + ∆ · d will satisfy (x̃ + ∆ · d)(δ(v)) = x̃(δ(v)) = 1.

However if |∆| is too large, x̃+∆·d ≥ 0 will not hold. Choose ∆1 and ∆2 as large as possible

so x1 = x̃+∆1 · d ≥ 0 and x2 = x̃−∆2 · d ≥ 0. Then x1, x2 ∈ P and, since each has fewer

fractional components than x̃, each is in PM(G). However, x̃ = (∆2x1 +∆1x2)/(∆1 +∆2)

and hence x̃ is a convex combination of members of PM(G) — we arrive at a contradiction.

Let G(V,E) be any graph. Consider the following polyhedron:

xe ≥ 0 ∀ e ∈ E

x(δ(v)) = 1 ∀ v ∈ V

This is called the fractional matching polytope of G, and is denoted by FM(G).
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Theorem 2.7 (Pulleyblank [23]): Let x ∈ FM(G). Then x is a vertex if and only if

the weighting xj ∈ {0, 1
2
, 1} ∀j ∈ E. Furthermore, the edges j for which xj = 1

2
form

node-disjoint odd cycles.

Proof: Let x̄ satisfy the above system, and let cj = −1 if x̄j = 0, cj = 0 if x̄j > 0. Then

x̄ is the unique member x of FM(G) for which cx = 0, since cx < 0 ∀x ∈ FM(G) \ {x̄}.

The necessity of the proof follows from Theorem 2.6.

The significance of this is that when the length of the messages is even, the guessing number

is half-integral, as shown by linear programming. We use this dependence on the length of

the messages in Chapter 4.

2.9 Summary

This chapter reviewed the key ideas from the existing literature. It explained the existing

methods used in traditional routing and why network coding improves upon those methods.

The concepts of a guessing number and the guessing game were formally defined, and

examples were provided to explain the real-world meaning of the concepts. It also reviewed

work on network routing capacity in order to fully understand how these ideas could be

included into the guessing game.

Shannon’s information entropy and some of Shannon’s inequalities are also explained, as

these will be key to the solutions provided in Chapter 4. Other existing ideas that will

prove important in subsequent chapters are also discussed here.
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Chapter 3

Extensions to Guessing Numbers

This chapter builds on the more important aspects of the literature review. The first

section gives a number of possible areas of research that were rejected for various reasons,

be they ones of complication, time constraints or otherwise. Definitions required for the

next chapter are also explained here. Finally, a theorem is stated linking the fractional

guessing game to fractional routing, as an analogue to the theorem linking the ordinary

guessing game to network coding.

3.1 Some Ideas

As with most new technologies, little of the topic of guessing numbers is refined into a

widely accepted theory. If, as in Section 2.1, network coding is to be viewed as Thomson’s

discovery of the electron and subsequent discoveries of other subatomic particles, then

guessing numbers may be viewed as a move away from the Newton’s corpuscular theory

towards the concept of wave-particle duality; the combining of two separate existing notions

to explain more complicated phenomena in the field. As such, there is much to investigate

in order to find the most beneficial advancements. Some of these advancements, then, will
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lead to an academic impasse. The following are some propositions that were either of little

value or proved to be too tricky or time-consuming.

3.1.1 Topological Equivalence of Networks

An interesting first concept was to investigate the degree of a given network — the de-

gree of the polynomial required to give an optimal solution, and investigate the topological

properties of networks with equal degree. However, as mentioned in Section 2.2.1, there

are very few networks that have been shown to require non-linear codes for optimal solu-

tions. Demonstrating topological equivalence would require a number of networks requiring

quadratic (degree 2) solutions, yet more requiring cubic solutions, and so on. Finding sin-

gle networks with these properties seems to be an entire topic in itself. Given the lack of

networks known to have these properties, this was considered infeasible.

3.1.2 Bipartite Graphs

(a) Bipartite graph with an ordinary public chan-

nel

(b) Bipartite graph with a second graph in place

of the public channel

Figure 3.1:
Changing the ordinary public channel in (a) to the more complicated
version in (b) does not help in finding a non-integer guessing number.

As mentioned in Section 2.6, it is possible to change a guessing number problem into

a public channel problem, by converting the graph into its bipartite representation and

substituting a suitable public channel for the guessing part of the game — if and only if
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the solution is linear [25]. The intention was to generalise or expand the public-channel

game so that it could also be used in the non-linear case, perhaps by replacing the public

channel with another network (Figure 3.1(b)). However, this led to the circular problem in

which a network with a non-integer guessing number was required to find a network with

a non-integer guessing number.

If a public channel is added to a network with a non-linear solution, then the guessing

number k of that network may be increased, but the solution would then be an integer

(i.e., a linear solution). It is not known, but would be interesting to investigate, whether

the guessing number of the new graph would simply be ⌈k⌉, the smallest integer not less

than k.

3.1.3 Delays and Error

Many problems in network flow deal with delay-free (and error-free) networks, and in-

deed all problems concerning guessing numbers do not incorporate either delay or error-

correcting codes. Real-world network flow problems may be translated into the theory of

error-correcting codes [28], but no work has yet been produced involving the graph-theory

approach of guessing numbers.

The implications of introducing these real-world events on a guessing game is not imme-

diately clear; however one may intuitively guess that any delay will improve the guessing

number of a particular graph, and error will reduce it.

3.2 Algebraic Calculations of Linear Guessing Num-

bers

It is shown in [25] that the linear guessing number has an algebraic definition:
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Let M = (mij)i,j be an n × n (0, 1)-matrix, and let A be a finite field. Then define

CA(M) to be the class of n × n matrices M ′ = (m′
ij)i,j with entries in the field A for

which mij = 0 ⇒ m′
ij = 0. Let I denote the n × n identity matrix and let µ(M) =

n−minM ′∈CA(M) rank(I +M ′).

Theorem 3.1: Let G be a directed graph with n nodes and adjacency matrix MG. Let A

be a finite field. Then the graph G has linear guessing number k (over the field A) if and

only if µ(GN) = k.

Remark: The reason that the identity matrix I is added to the matrices M ′ is that the

adjacency matrix M (and therefore the matrices M ′) have zeroes along the diagonal. In

practice, any element a ∈ A could be consistently used along the diagonal, but each a could

be reduced to 1 by adding linear combinations of other rows or columns.

3.2.1 Generalising Riis’ Equations

It is shown that it is possible to compute linear guessing numbers algebraically, by comput-

ing the ranks of a class of matrices. The linear guessing number has an algebraic definition

µ(GN) given above. It would be desirable if the algebraic definition could be extended

to encompass non-linear guessing numbers. Network flow problems exist in the literature

[12, 24] which only have non-linear solutions. Attempting to generalise the algebraic def-

inition proves difficult, namely in finding the analogue of a ‘rank’ in non-linear functions.

Whilst one may use Gröbner bases to solve simultaneous polynomial equations, the notion

of rank does not extend to allow computation of a non-linear guessing number. It is worth

pointing out that it is possible to rewrite Theorem 3.1 for non-linear guessing numbers,

but this would merely be restating their definition. Instead of the rank, some notion of

“whether this system is solvable” would be used.
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3.3 Equivalence of Network Problems

The process of reduction alters a network coding problem into exactly one problem in

graph theory. The reverse, however, gives a class of networks. It can be shown that these

network coding problems are equivalent, simply by considering the number of split moves

and unsplit moves required to produce them (see Section 2.3).

If network A and network B are both produced from graph G, then A and B have the

same source transmission bandwidth. If A has global success rate p then it is possible (and

easy) to compute the global success rate of B by first calculating the global success rate of

G.

The motivation behind understanding this equivalence was to investigate if knowledge of it

would allow investigation into the relationships between different network flow problems.

However, it provided no extra information that was not already present in the literature;

this equivalence would seem to be implicit, and as such is only made explicit here to clarify

the link between network flow problems and their circuit representation.

3.4 Extending the Guessing Game to Include Routing

Capacity

An extension of the guessing game is to include the concept of routing capacity on the

network. A co-operative game involving only routing capacity can be imagined by players

only being allowed to concatenate the visible bits, without any other operations. The

addition of network coding allows the players to perform arbitrary bit operations.

Transforming network coding problems into problems on graphs works by identifying source

nodes with their respective sink nodes. The equivalent transformation in the routing ca-

pacity case results in asymmetrical, directed graphs.
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Figure 3.2:
Asymmetrical graph transformed from a problem in routing capacity.
The internal nodes are arbitrary.

The source nodes in Figure 3.2 are each transmitting messages of length log(s) bits. In

general, the edges are of some capacity greater than 1. This means that the (arbitrary)

internal nodes must be able to handle concatenations of larger inputs for the receiver nodes

to compute their required messages. Mathematically, however, it is more interesting to

investigate symmetrical, undirected graphs.

It has been shown that the solutions over an alphabet A (where |A| = s) of an information

network flow problem N ∈ Cmu with n input nodes and n output nodes correspond directly

with the optimal guessing strategies for a game played on GN over the same alphabet A,

and that each strategy ensures that the players succeed with probability sn−|GN | (|GN |

being the number of vertices in GN) [25, 26].

The definition of the guessing game must be slightly modified to incorporate the different

techniques used in routing problems as well as the size of the messages at the nodes. There

is no longer a specific value mv ∈ A, but a message consisting of bits from A.

The following is a formalisation of the new guessing game.

Definition 3.2: Let RoutingGuessingGame(G, s) or RGG(G, s) denote a co-operative

game where each vertex v ∈ V is assigned a message mv. The message is actually a block

mv = m1m2m3 . . .ms where each mi ∈ A. This message is then transmitted to each vertex
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w with (v, w) ∈ E. In other words, vertex w receives a set Mw = {mv ∈ As : (v, w) ∈ E}.

The goal is then to calculate the probability that the optimal protocol P (consisting of the

functions fw : As|Mw| → As) succeeds.

This definition is a minor modification of the ordinary guessing game where the alphabet

A is replaced with an alphabet As. The modification is motivated by the success of the

specific guessing strategies highlighted in Chapter 4, and allows us to capture the idea of

fractional routing into the guessing game. As we will see, the game has a particularly nice

solution if the size of the alphabet is a perfect square, where s = t2, t ∈ N, t > 1. This

corresponds to a version of the dice game where each player is assigned two dice values

x, y ∈ {1, 2, . . . , t} (see Section 4.3.1).

The definition above describes the messages as bit strings, but for the case where s is a

perfect square this is not really an appropriate definition since perfect squares are rarely

a power of 2. It is possible to write the strings in a different base to achieve the desired

effect, but in fact it makes more sense to write the problem as an entropy argument. This

is motivated by proofs which appear in Chapter 4.

In this setting, the message mv should be viewed as a collection of independent variables

Mv = {Xv,1, Xv,2, . . . , Xv,s}, where each Xv,r are statistically independent, so the joint

entropy is equal to the sum of the individual entropies: H(A,B) = H(A) +H(B), for any

A,B ∈ Mv.

As mentioned in Section 2.3, a multiple-unicast network N has a solution over an alphabet

A if and only if the corresponding graph GN has a guessing number not less than the

number of input/output nodes in N . In exactly the same manner we can relate the new

fractional guessing game defined above to fractional routing by the same theorem, the result

of which is outlined below.

Theorem 3.3: A circuit information flow problem N with n input / output nodes has a

fractional routing solution using words of length k if and only if the guessing number of

the corresponding graph GN has a fractional guessing number not less than n.
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3.5 Summary

This chapter discusses various ideas for the progression of the thesis. Of the many ideas that

were suggested, the more interesting research areas have been highlighted here, together

with reasons for their infeasibility. Given time and other resources, it is entirely possible

that such areas of work may produce fruitful work, hence their inclusion here.

In addition, a number of definitions are provided here as a precursor to Chapter 4. The

main definition given of the fractional guessing game, which combines fractional routing

and guessing numbers. This modified game will be used in the next chapter, which will

discuss applications of the new game in solving particular problems in graph theory and

network flow.
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Chapter 4

Proofs

This chapter includes the main proofs related to the definition of the guessing game with

fractional routing. Examples of the new game are provided to help explain the concept.

These examples give an insight into where the new fractional guessing game can improve

on the ordinary definition of the guessing game.

4.1 Examples

Figure 4.1: K3 has k = 3/2 for block length 1.

It is interesting to study the strategies that yield the highest guessing numbers for players.

In Figure 4.1 above, each player must resolve their own message (comprising log(s) bits)

— however, only one bit may be received from each neighbour. When comparing bits,

the probability that the two are the same is s−1/2. If three bits are fixed, then since the
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other three are independent, the probability that each player correctly determines their

own message is s−3/2, giving a guessing number of k = 3/2. In other words, this strategy

succeeds with higher probability than uncoordinated random guessing, but it is not as

successful as the network coding strategy.

Figure 4.2: Grouping vertices on Ci6 (1, 2) yields the optimal solution.

The circulant graph Ci6 (1, 2) in Figure 4.2 contains 6 vertices. If 4 bits are fixed, then there

are 8 free bits, giving a probability of success of (s−1/2)8 = s−4, and a guessing number of

2. However, if the graph is split into 3 node-disjoint pairs, then each pair independently

guesses both messages correctly with a likelihood of 1/s, giving a total probability of s−3,

or a fractional guessing number k = 3. Splitting the graph into two node-disjoint triangles

gives the same result: (s−3/2)2 = s−3.

The ideas from fractional matching are used here; two node-disjoint odd cycles are formed

in which each edge contributes 1/2 to the guessing number. Paring up the nodes allows

each edge in the matching to contribute 1 to the guessing number.

This strategy can be continued by considering larger graphs. If a graph containing n vertices

can be decomposed into p pairs and q triples, where each of the subgraphs is complete, then

the probability that all players correctly determine their message is s−p × s−3q/2 = s−n/2,

since the number of vertices n = 2p + 3q. Any complete or suitably dense graph may be

decomposed in this way. (Graphs containing any vertices of degree less than 2 are of no

interest in this game.)
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4.2 Guessing Numbers and Cycles

The graph in Figure 4.1 is an example where linear network coding is more successful than

fractional routing. In general, this is not the case. K3 can also be referred to as C3, or a

3-cycle. An n-cycle is a graph containing n vertices and exactly 1 cycle; each vertex has

degree 2. This section looks at different strategies on (undirected) n-cycles.

4.2.1 The 2n-cycle

Here, we consider graphs containing an even number of nodes, each with degree 2, thus

forming a cycle containing an even number of vertices. We arrive at the following theorem:

Theorem 4.1 ([27]): For each n ∈ N, the 2n-cycle has guessing number n.

Proof: First, consider the cycle as n pairs, each connected by an undirected edge; the

other edges are simply ignored. Each pair contributes 1 to the guessing number; hence C2n

has a guessing number of at least n.

Now denote by {x1, x2, . . . , x2n} the set of values assigned at random to the edges of the

cycle. Fix any guessing protocol P and let LP denote the set of 2n-tuples (x1, x2, . . . , x2n) ∈

A2n for which all nodes correctly guess their assigned value. Now calculate the entropy of

a string selected at random from LP , using the logarithm in base s, where s = |A|. To

show the guessing number is at most 2 is equivalent to showing that H(LP) ≤ n. Let

(x1, x2, . . . , x2n) denote the random choice of a tuple from LP . Shannon’s inequalities

provide the following:

H(xj) ≤ 1 ∀j ∈ {1, 2, . . . , 2n}

H(xj−1, xj, xj+1)−H(xj−1, xj+1) = 0 ∀j ∈ {1, 2, . . . , 2n}

where j − 1 and j + 1 are calculated modulo 2n.
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From this it can be seen that:

H(x1, x2, . . . , x2n) = H(x1, x3, x5, . . . , x2n−1)

≤
n∑

r=1

H(x2r−1)

≤ n.

4.3 The 5-cycle

The 5-cycle, or pentagon, is an odd cycle, but unlike the 3-cycle, it is not complete. This

loses the advantage of the previous optimal network coding strategy. This optimal strategy

is the same as the strategy for the even cycle mentioned above, but with an odd cycle

there will always be a vertex excluded from the pairings. Essentially, this means that

the guessing number of Cn (utilising linear network coding) is given by n div 2, with the

notable exception of C3. Using fractional routing would seem to give a guessing number of

n/2, giving this method an advantage for odd cycles.

This shows that there exists a non-integer guessing number using fractional routing. To

see this, note that it is not possible for C5 to have a guessing number of 3: if this was the

case, then the network N5 ∈ Cmu shown in Figure 4.3 would be solvable. However it is

not solvable using only routing, so the guessing number is less than 3. This is a particular

application of the link between guessing numbers and the solvability of networks. Since

the guessing number has been shown to be at least 5/2, this proves the existence of a

non-integer guessing number using fractional routing.

It is now clear why the new game must be imagined as two dice values, or some other

example which splits the data at one node evenly between each of the two adjacent nodes.

Imagine that it was not the case, and that each node transmitted a fraction p to the left,

and a fraction 1− p to the right. To maintain the advantage described above, and for each
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Figure 4.3:
The pentagon in multiple-unicast form. As with bipartite graphs, there
are two copies of the “external” nodes a, c and e.

node to receive the same amount of information, each must act consistently. Since the

number of nodes is odd, one node will receive a fraction p from each neighbour, meaning

p = 1− p and p = 1/2.

4.3.1 The Möbius-Band Guessing Strategy

As mentioned in Section 3.4, The guessing game played on the pentagon has a particularly

elegant solution if the alphabet size is a square number, s = t2. Here imagine that each

player has two t-sided dice, numbered in the usual manner from 1 to t. the two values

are given as an ordered pair (x, y) ∈ {1, 2, . . . , t}2. This provides an example of a network

where the guessing number does indeed depend on s.

In the case of a pentagon, the players are assigned values (xi, yi), for i ∈ {1, 2, 3, 4, 5}.

Consider the guessing strategy where each player assumes that the following identities

hold:

x1 = x2

x3 = x4

x5 = y1

y2 = y3

y4 = y5. (4.1)
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This is analogous to each player assuming that one of their dice has the same value as one

of their left neighbour’s dice, and the other having the same value as one of their right

neighbour’s dice. This set of identities can be viewed geometrically as a Möbius band, by

writing x1 = x2, x3 = x4, x5 = on one side of a strip of paper, y1, y2 = y3, y4 = y5, on the

other side, and fix the strip together with a half-twist [27], as in Figure 4.4. Note that other

pairings could be used, for instance xi = yi+1 for i ∈ {1, 2, 3, 4, 5}, where i is calculated

modulo 5, provided that there is a connecting edge between the two values.

Figure 4.4:
The Möbius-band guessing strategy is so called because it can be viewed
as the set of solutions written on two sides of a strip of paper.

Using this guessing strategy on the pentagon ensures a guessing number in the half-open

interval (2, 2.5], with the upper bound of 2.5 only achievable if the underlying alphabet

contains a square number of letters. In other words, if the size of the alphabet is not a

perfect square, then the interval is fully open. Here we have an example where the guessing

number depends on s. This idea is expressed in Lemma 4.2 and Lemma 4.3.

Lemma 4.2 ([27]): The Möbius-band guessing strategy ensures that k(C5, s) ≥ 5/2 where

s = t2, t ∈ N, t > 1.

Proof: Using the Möbius-band guessing strategy, the players all guess correctly when

the system of equations (4.1) hold, which happens with probability t−5 = s−5/2. Since

uncoordinated random guessing succeeds with probability s−5, the guessing number is at

least 5/2.
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As mentioned above, this lemma requires the alphabet to contain a square number of

letters. In general, a similar method can be used, and indeed will be used below, though

the upper bound of 5/2 is unachievable.

Lemma 4.3 ([27]): The guessing number of the pentagon is at most 5/2.

Proof: As with the proof for the 2n-cycle, fix any guessing protocol P and let LP denote

the set of 5-tuples (x1, x2, . . . , x5) ∈ A5 for which all nodes guess correctly. Select a string

at random from LP , and calculate the entropies of the random variables in the string, using

the logarithm in base s, where s = |A|. Again using Shannon’s identities:

H(xj) ≤ 1 ∀j ∈ {1, 2, 3, 4, 5}

H(xj−1, xj, xj+1)−H(xj−1, xj+1) = 0 ∀j ∈ {1, 2, 3, 4, 5}.

In addition to these identities there is a joint entropy relation, rather key to Shannon’s

theory of information, which states that

H(A,B,C) +H(C) ≤ H(A,C) +H(B,C). (4.2)

Now letting (A,B,C) = ({x1}, {x3}, {x4, x5}), the inequality becomes

H(x1, x2, x3, x4, x5) +H(x4, x5) = H(x1, x3, x4, x5) +H(x4, x5)

≤ H(x1, x4, x5) +H(x3, x4, x5)

= H(x1, x4) +H(x3, x5)

≤ H(x1) +H(x3) +H(x4) +H(x5).

Thus,

H(x1, x2, x3, x4, x5) ≤ H(x1) +H(x3) +H(x4) +H(x5)−H(x4, x5). (4.3)
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Next, using conditional entropy,

H(x1, x2, x3, x4, x5)−H(x2, x5) ≤ H(x3, x4|x2, x5)

= H(x4|x2, x5)

≤ H(x4|x5)

= H(x4, x5)−H(x5).

This gives

H(x1, x2, x3, x4, x5) ≤ H(x2, x5) +H(x4, x5)−H(x5)

≤ H(x4, x5) +H(x2). (4.4)

Adding (4.3) and (4.4) we get

2H(x1, x2, x3, x4, x5) ≤ H(x1) +H(x2) +H(x3) +H(x4) +H(x5) ≤ 5.

The same argument may be used to prove a similar theorem about odd cycles in general:

Theorem 4.4 ([11]): The optimal guessing number of an undirected cycle on 2k+1 vertices

is k + 1
2
.

Proof:

As before, setting (A,B,C) = ({x1}, {x3, . . . , x2k−1}, {x2k, x2k+1}) in (4.2), we have

H(x1, x2, x3, . . . , x2k, x2k+1) +H(x2k, x2k+1) = H(x1, x3, . . . , x2k, x2k+1) +H(x2k, x2k+1)

≤ H(x1, x2k, x2k+1) +H(x3, . . . , x2k+1)

≤ H(x1, x2k) +H(x3, x5, . . . , x2k−1, x2k+1)

≤ H(x2k) +
k∑

r=0

H(x2r+1).

43



This gives

H(x1, . . . , x2k+1) ≤ H(x2k)−H(x2k, x2k+1) +
k∑

r=0

H(x2r+1). (4.5)

Now setting (A,B,C) = ({x2, . . . , x2k−2}, {x2k}, {x2k+1}) in (4.2), we have

H(x1, . . . , x2k+1) +H(x2k+1) = H(x2, . . . , x2k−2, x2k, x2k+1) +H(x2k+1)

≤ H(x2, . . . , x2k−2, x2k+1) +H(x2k, x2k+1)

≤ H(x2, x4, . . . , x2k−4, x2k−2, x2k+1) +H(x2k, x2k+1)

≤ H(x2k, x2k+1) +H(x2k+1) +
k−1∑
r=1

H(x2r).

Therefore,

H(x1, . . . , x2k+1) ≤ H(x2k, x2k+1) +
k−1∑
r=1

H(x2r). (4.6)

Finally, adding (4.5) and (4.6) we get

2H(x1, . . . , x2k+1) ≤
2k+1∑
r=1

H(xr) ≤ 2k + 1.

4.3.2 General Case

As mentioned above, the guessing game has a nice solution when s = |A| is a perfect square,

and the guessing number of a pentagon in this case is 5/2. In general, where the size of

the alphabet is not necessarily a square, the guessing number is in the interval (2, 2.5) as

before. The cardinality of LP is (in general) an integer.

Observation: The guessing number of any directed graph on n nodes over an alphabet of

size s is of the form k = logs(j) where j ∈ N.
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From this, and using the transcendence of numbers of the form logs(j), the following is

evident:

Corollary 4.5: Assume s is not a power. Then the guessing number of a directed graph

over an alphabet of size s is either an integer or an irrational number. If, on the other

hand, s = tk where t is not a power, each directed graph has either a guessing number of

the form r/k where r ∈ N, or is irrational.

4.3.3 Example

To illustrate the above observation, the simplest example is used here: the case of the

pentagon where the underlying alphabet has size 2; A = {0, 1}. The guessing number

is of the form log2(j). Since the guessing number is at least 2 and at most 5/2, there

are only two possible values, where j = 4 and j = 5, giving guessing numbers of 2 and

log2(5) ≈ 2.32. There is actually a strategy that ensures a guessing number of log2(5):

All players guess with the assumption that there are never two consecutive 1s or three

consecutive 0s. There are exactly five 5-tuples that satisfy these assumptions, namely

(0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (0, 1, 0, 1, 0), (1, 0, 0, 1, 0) and (1, 0, 1, 0, 0). This strategy also

uniquely determines the values available to the players from their neighbours. The guessing

strategy succeeds with probability 5/32, or 5 times more successful than random guessing.

Therefore, the guessing number of the pentagon for s = 2 is log2(5).

4.3.4 Three-Layers Argument

The three-layers argument is useful as a pictorial description of the message pairing process

used in the Möbius-band guessing strategy. In the case of even cycles, it is not possible

to improve on the node-pairing method. To show that it is not possible to improve on a

guessing number of n for a 2n-cycle, consider a pattern where every evenly numbered node

is fixed, so the odd-numbered nodes can be uniquely determined.
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As in Section 4.3.1 above, each node in a pentagon is assigned two values (xi, yi), for

i ∈ {1, 2, 3, 4, 5}, and xi = yi+1 for i ∈ {1, 2, 3, 4, 5}, where i is calculated modulo 5. Now,

split all nodes xi as with a bipartite graph, leaving nodes yi as “internal” nodes. The initial

and resulting graphs are shown in Figure 4.5.

(a) (b)

Figure 4.5:
Each node of the pentagon (a) is assigned two values. Nodes xi are
then split as in a bipartite graph to give the three-layered graph (b).
As with bipartite graphs, edges are directed downwards.

This argument seems to show quite well what happens when considering that each node

has two messages to resolve.

4.4 Summary

This chapter contains the main theorems resulting from the new guessing game. The

proofs of these theorems are also included, and centre mainly around the use of Shannon’s

inequalities to determine the guessing numbers of particular graphs, specifically undirected

cycles. Two key observations are made about the properties of guessing numbers under

certain conditions in the new game; finally, the observations are illustrated with a simple

example.
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Chapter 5

Evaluation

This chapter provides an evaluation of the new guessing game based on network routing

capacity. It looks at the objectives mentioned in the introduction of the thesis, and attempts

to critically evaluate how successful the thesis was in achieving those objectives. It also

suggests possible further work, as a number of ideas for further research have become

apparent during the course of developing the methods used here.

5.1 Evaluation of the Criteria for Success

In Section 1.5 the following criteria for success were outlined:

� study and description of existing methods within network coding and network routing

capacity;

� development of a new method for solving network flow problems based on existing

techniques;

� abstraction and formalisation of a modified guessing game based on the new method;
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� study and evaluation of cases in which the new game is more successful than the

existing game.

These criteria are evaluated below to determine the overall success of the thesis.

5.1.1 Study and Description of Existing Methods

Chapter 2 contains the literature review, which investigates existing work and methods

currently in use. It follows on from the historic introduction provided in Chapter 1, which

provides a basic chronology of the events leading up to the beginning of this thesis. The

chapter gives an in-depth explanation of the traditional routing methods in use today, and

follows on to give simple examples where network coding has been shown to be superior.

Guessing numbers and routing capacity are also defined here, along with a number of

definitions which are used throughout the thesis. A number of other relevant topics which

will be used in later sections are given detailed explanations, together with simple examples

to further illustrate their meaning.

Each major technique for dealing with network flow problems has been either superseded or

generalised to tackle a larger set of problems, and though specific approaches and notations

may have changed and improved, the overall goal remains the same: to model in theoretical

terms particular problems which occur in the real world, to understand them and to inves-

tigate how they may be solved. Work that brings together two or more techniques within

a field — like combining information theory with network routing [1], or indeed brings

together work from two or more fields — like network coding and graph theory [25, 26],

may be seen as an advancement towards some unified theory for understanding network

flow. The literature survey has been satisfactory in determining the most useful features

of existing work to be combined into the new game.
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5.1.2 Development of a New Method

To this end, this thesis has brought together two recent techniques in network theory,

namely Riis’ largely uncharted field of guessing numbers and Cannons et al.’s study into

routing capacity. Chapter 3 arrives at the conclusion that these are the best areas to

consider, from discussing a number of possible approaches to arriving at a suitable amal-

gamation to be formalised and studied.

Section 3.1 lists some of the initial areas of research before moving on to study routing

capacity. Throughout the research, a great number of ideas were discussed, before being

disregarded due to their difficulty. It proved to be rather frustrating that so many questions

were raised that simply could not be answered sufficiently, but it was necessary to discard

these ideas in favour of more fruitful areas of research.

The main result of this development was to arrive at the combination of techniques men-

tioned above, extending and modifying the guessing game played on graph representations

of network flow problems, to include the routing capacity of those networks. The game

introduced is not new, however, and is merely an extension of the game existing in the

literature.

What the game does do is to include the concept of fractional routing for multiple-unicast

networks into the existing guessing game: the original guessing game was concerned with

using a guessing strategy over an alphabet A. The notion of fractional routing uses block

coding where strings of letters {a1, a2, . . . , ak} are used, which is mathematically equivalent

to using an underlying alphabet of Ak.
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5.1.3 Abstraction & Formalisation of a Modified Guessing Game

Once the extension was developed, the ideas proposed were formalised to produce the

co-operative guessing game RoutingGuessingGame(G, s) played on a graph G where the

messages are selected from an alphabet of size s. This essentially incorporates the notion of

fractional routing into the existing game. Particular problems were identified and examples

were given in Chapter 4. Particularly, the main result has been to show the effectiveness

of the new game with odd cycles C2k+1, k ∈ N.

To further illustrate the place of the new game in relation to the current literature, a

theorem is stated linking the fractional guessing game to fractional routing in the same

way that the ordinary guessing game was related to network coding. The connection

between the fractional guessing number and the fractional routing solution of the related

circuit information flow problem helps to formalise the guessing game.

A general objective mentioned in the introduction was to go some way to reducing the

number of open questions in the field of network coding and guessing numbers. When

guessing numbers were first defined, they helped to answer some questions, but also in-

troduced questions into the field. One such question was whether the guessing number of

an undirected graph is always an integer [25]. In Section 4.3.1, it is proven that the undi-

rected pentagon C5 has a non-integer guessing number. An unexpected result was that the

guessing number also depended on the alphabet size s. This work is then generalised to

odd cycles of the form C2k+1, for k ∈ N. It is these odd cycles where the newly introduced

method has an advantage over the existing use of scalar linear network coding.

Although the thesis does indeed prove and give examples to satisfactorily answer this

question, other questions arise, mostly regarding using this method in conjunction with

existing techniques. For instance, it is not known whether a network exists for which

both linear network coding and fractional routing are insufficient, yet some other method

succeeds.
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5.1.4 Evaluation of the New Method against the Old Method

The main objective mentioned in Section 1.5 was to give a new method of solving network

flow problems. The result is that using a fractional routing approach, a class of networks

has been found where this new approach improves on the success of linear network coding.

Specifically, as mentioned in Section 4.3, there exists a simple graph (the 5-cycle) where a

guessing strategy using fractional routing (and two dice) fares better than any (fractional)

guessing strategy using one die. Whilst this method does improve on both the existing

guessing strategy, it does so in a very small class of networks. The idea of using a fractional

guessing strategy would need to be continued to see if it succeeds on other classes of

networks where other guessing strategies do not. It would be interesting to see if there is

any case where it could out-perform a network coding approach using non-linear functions.

The correspondence between the guessing game defined here and the game previously de-

fined in [25] is not precise: messages in routing problems are generally larger than those in

network coding. Consequently, it is difficult to provide a comparison between the games —

sometimes a coding strategy fares better, other times a fractional routing strategy proves

more successful. However, this does mean that we have extended the existing approach for

studying this class of information flow problems.

Whilst the idea of combining the techniques of guessing games and fractional routing may

make sense in terms of data transmission, it does not do so in terms of the games outlined

in the previous chapters. However, it may prove to have some validity if a restriction is

placed on the network coding strategy, such as only allowing linear functions to be used.
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5.2 Extensions

One interesting extension has already been mentioned above, namely the combination of

linear network coding with routing capacity to produce more advanced strategies for the

guessing games. However, study in this field seems to be moving toward the use of non-

linear coding functions to provide the best results in the case of larger networks. By

comparison, the work in this thesis is on relatively simple networks, and may not translate

to these more complex situations.

It may also be worth considering further study into the public-channel version of the guess-

ing game, and extending that to include routing capacity in the same way that the ordinary

game was altered. It is likely that this would back up the findings from the odd cycle: for

each message to be uniquely determined on an odd cycle, a smaller public channel would

be required for a fractional routing approach than for the existing approach.

Different representations of the same problem can yield different solutions, in some cases

more successful than previous, known results. The examples given in Chapter 4 are cases

where the fractional routing provides a solution which succeeds with higher probability than

scalar linear solutions. Further extending these games would hopefully lead to a collection

of approaches for tackling a great number of problems in network flow.
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Chapter 6

Conclusion

This thesis is concerned with network coding, an emerging field of information theory

which allows us to obtain the optimum flow of information through a network. It has a

number of real-world applications which could reduce network delays, improve reliability or

otherwise increase throughput. Such a great number of technological advancements rely on

the transmission of data across such a network — radio and television, telecommunications

and the Internet to name but a few — that understanding any possible improvements

that can be made to this transmission is of great interest to the professionals who monitor

them. With increasing focus placed on wireless communication instead of wireline systems,

the detection and correction of data corruption becomes ever-more important, as does the

compression and security of the transmission. Network coding has a number of diverse

applications to which it can be applied.

In attempting to understand problems in network flow, a mathematical representation of

the problem is used. In Riis’ guessing game, the coding functions used in the network

are represented by the guessing strategies adopted by the players. There is a one-to-one

correlation between the solutions of an information network flow problem and the optimal

guessing strategies adopted by the players on the corresponding graph.
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The main intention of the thesis was to combine the techniques of fractional routing with

the concept of guessing numbers to further the study of guessing numbers and their use with

network information flow problems. In attempting this, it was also hoped to be possible to

answer some of the open questions relating to network coding. The evaluation shows that

these objectives have been met, but that the method only succeeds in a limited number of

cases. However, further work could go some way into increasing the number of problems

where fractional routing provides the optimum solution.

The new guessing game is an intersection of two major areas of mathematics, and shows

what can be achieved with a relatively simple example. Regarding the specific criteria

for success, it is fair to say that grandiose objectives such as a “new method” were per-

haps overly ambitious, and to suggest that this objective had been entirely met would be

over-stating the achievements: the work produced is only a minor modification of work

introduced in the literature. The formulation of completely new methods is left to the

experts; the work in this thesis simply aims to build on those methods already suggested.

Beyond this, however, it is fair to conclude that the objectives were both well-proposed

and satisfactorily met.

A larger range of different examples would be required to show the general usefulness of

the new guessing game to the network coding. The field of network coding is still rather

new, and more proof is needed of its viability before it is widely adopted as an alternative

to traditional routing.

6.1 Open Questions

� The routing capacity of a network is always rational. Is this true for a guessing

number?

� If not, what restrictions must be placed on the guessing number to force rationality?

� If the guessing number k of a given graph is independent of the alphabet size s, is k

necessarily an integer?
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